HyperDbg Documentation
CommunityDownloadResearchTutorialhwdbg
  • HyperDbg
  • Getting Started
    • Quick Start
    • FAQ
    • Build & Install
    • Attach to HyperDbg
      • Attach to a remote machine
      • Attach to local machine
      • Start a new process
      • Attach to a running process
  • Using HyperDbg
    • Prerequisites
      • Operation Modes
      • How to create a condition?
      • How to create an action?
      • Signatures
    • User-mode Debugging
      • Principles
      • Examples
        • basics
        • events
          • Getting Results of a System-call
    • Kernel-mode Debugging
      • Principles
      • Examples
        • beginning
          • Connecting To HyperDbg
          • Configuring Symbol Server/Path
        • basics
          • Setting Breakpoints & Stepping Instructions
          • Displaying & Editing & Searching Memory
          • Showing & Modifying Registers and Flags
          • Switching to a Specific Process or Thread
          • Mapping Data & Create Structures, and Enums From Symbols
        • events
          • Managing Events
          • Hooking Any Function
          • Intercepting All SYSCALLs
          • Monitoring Accesses To Structures
          • Triggering Special Instructions
          • Identifying System Behavior
        • Scripting Language Examples
    • Software Development Kit (SDK)
      • Events
        • Conditions
        • Actions
      • IOCTL
        • Event Registration
  • Commands
    • Debugging Commands
      • ? (evaluate and execute expressions and scripts in debuggee)
      • ~ (display and change the current operating core)
      • a (assemble virtual address)
      • load (load the kernel modules)
      • unload (unload the kernel modules)
      • status (show the debuggee status)
      • events (show and modify active/disabled events)
      • p (step-over)
      • t (step-in)
      • i (instrumentation step-in)
      • gu (step-out or go up)
      • r (read or modify registers)
      • bp (set breakpoint)
      • bl (list breakpoints)
      • be (enable breakpoints)
      • bd (disable breakpoints)
      • bc (clear and remove breakpoints)
      • g (continue debuggee or processing kernel packets)
      • x (examine symbols and find functions and variables address)
      • db, dc, dd, dq (read virtual memory)
      • eb, ed, eq (edit virtual memory)
      • sb, sd, sq (search virtual memory)
      • u, u64, u2, u32 (disassemble virtual address)
      • k, kd, kq (display stack backtrace)
      • dt (display and map virtual memory to structures)
      • struct (make structures, enums, data types from symbols)
      • sleep (wait for specific time in the .script command)
      • pause (break to the debugger and pause processing kernel packets)
      • print (evaluate and print expression in debuggee)
      • lm (view loaded modules)
      • cpu (check cpu supported technologies)
      • rdmsr (read model-specific register)
      • wrmsr (write model-specific register)
      • flush (remove pending kernel buffers and messages)
      • prealloc (reserve pre-allocated pools)
      • preactivate (pre-activate special functionalities)
      • output (create output source for event forwarding)
      • test (test functionalities)
      • settings (configures different options and preferences)
      • exit (exit from the debugger)
    • Meta Commands
      • .help (show the help of commands)
      • .debug (prepare and connect to debugger)
      • .connect (connect to a session)
      • .disconnect (disconnect from a session)
      • .listen (listen on a port and wait for the debugger to connect)
      • .status (show the debugger status)
      • .start (start a new process)
      • .restart (restart the process)
      • .attach (attach to a process)
      • .detach (detach from the process)
      • .switch (show the list and switch between active debugging processes)
      • .kill (terminate the process)
      • .process, .process2 (show the current process and switch to another process)
      • .thread, .thread2 (show the current thread and switch to another thread)
      • .pagein (bring the page into the RAM)
      • .dump (save the virtual memory into a file)
      • .formats (show number formats)
      • .script (run batch script commands)
      • .sympath (set the symbol server)
      • .sym (load pdb symbols)
      • .pe (parse PE file)
      • .logopen (open log file)
      • .logclose (close log file)
      • .cls (clear the screen)
    • Extension Commands
      • !a (assemble physical address)
      • !pte (display page-level address and entries)
      • !db, !dc, !dd, !dq (read physical memory)
      • !eb, !ed, !eq (edit physical memory)
      • !sb, !sd, !sq (search physical memory)
      • !u, !u64, !u2, !u32 (disassemble physical address)
      • !dt (display and map physical memory to structures)
      • !track (track and map function calls and returns to the symbols)
      • !epthook (hidden hook with EPT - stealth breakpoints)
      • !epthook2 (hidden hook with EPT - detours)
      • !monitor (monitor read/write/execute to a range of memory)
      • !syscall, !syscall2 (hook system-calls)
      • !sysret, !sysret2 (hook SYSRET instruction execution)
      • !mode (detect kernel-to-user and user-to-kernel transitions)
      • !cpuid (hook CPUID instruction execution)
      • !msrread (hook RDMSR instruction execution)
      • !msrwrite (hook WRMSR instruction execution)
      • !tsc (hook RDTSC/RDTSCP instruction execution)
      • !pmc (hook RDPMC instruction execution)
      • !vmcall (hook hypercalls)
      • !exception (hook first 32 entries of IDT)
      • !interrupt (hook external device interrupts)
      • !dr (hook access to debug registers)
      • !ioin (hook IN instruction execution)
      • !ioout (hook OUT instruction execution)
      • !hide (enable transparent-mode)
      • !unhide (disable transparent-mode)
      • !measure (measuring and providing details for transparent-mode)
      • !va2pa (convert a virtual address to physical address)
      • !pa2va (convert physical address to virtual address)
      • !dump (save the physical memory into a file)
      • !pcitree (show PCI/PCIe device tree)
      • !pcicam (dump the PCI/PCIe configuration space)
      • !idt (show Interrupt Descriptor Table entries)
      • !apic (dump local APIC entries in XAPIC and X2APIC modes)
      • !ioapic (dump I/O APIC)
    • Scripting Language
      • Assumptions & Evaluations
      • Variables & Assignments
      • Casting & Type-awareness
      • Conditionals & Loops
      • Constants & Functions
      • Debugger Script (DS)
      • Examples
        • view system state (registers, memory, variables)
        • change system state (registers, memory, variables)
        • trace function calls
        • pause the debugger conditionally
        • conditional breakpoints and events
        • patch the normal sequence of execution
        • access to a shared variable from different cores
        • count occurrences of events
      • Functions
        • debugger
          • pause
        • events
          • event_enable
          • event_disable
          • event_clear
          • event_sc
          • event_inject
          • event_inject_error_code
          • flush
        • exports
          • print
          • printf
        • interlocked
          • interlocked_compare_exchange
          • interlocked_decrement
          • interlocked_exchange
          • interlocked_exchange_add
          • interlocked_increment
        • memory
          • check_address
          • eb, ed, eq
          • eb_pa, ed_pa, eq_pa
          • memcpy
          • memcpy_pa
          • memcmp
          • virtual_to_physical
          • physical_to_virtual
        • diassembler
          • disassemble_len
          • disassemble_len32
        • spinlocks
          • spinlock_lock
          • spinlock_lock_custom_wait
          • spinlock_unlock
        • timings
          • rdtsc
          • rdtscp
          • microsleep
        • strings
          • strlen
          • wcslen
          • strcmp
          • strncmp
          • wcscmp
          • wcsncmp
    • Commands Map
  • Tips & Tricks
    • Considerations
      • Basic concepts in Intel VT-x
      • VMX root-mode vs VMX non-root mode
      • The "unsafe" behavior
      • Script engine in VMX non-root mode
      • Difference between process and thread switching commands
      • Accessing Invalid Address
      • Transparent Mode
    • Nested-Virtualization Environments
      • Supported Virtual Machines
      • Run HyperDbg on VMware
      • Run HyperDbg on Hyper-V
      • Supporting VMware/Hyper-V
      • VMware backdoor I/O ports
    • Misc
      • Event forwarding
      • Event short-circuiting
      • Event calling stage
      • Instant events
      • Message overflow
      • Customize build
        • Increase Communication Buffer Size
        • Number of EPT Hooks in One Page
        • Change Script Engine Limitations
      • Enable and disable events in Debugger Mode
      • Switch to New Process Layout
  • Contribution
    • Style Guide
      • Coding style
      • Command style
      • Doxygen style
    • Logo & Artworks
  • Design
    • Features
      • VMM (Module)
        • Control over NMIs
        • VMX root-mode compatible message tracing
        • Design of !epthook
        • Design of !epthook2
        • Design of !monitor
        • Design of !syscall & !sysret
        • Design of !exception & !interrupt
    • Debugger Internals
      • Events
      • Conditions
      • Actions
      • Kernel Debugger
        • Design Perspective
        • Connection
  • Links
    • Twitter
    • Telegram
    • Discord
    • Matrix
    • Mastodon
    • YouTube
    • hwdbg (Chip Debugger)
    • Doxygen
    • Contribution
Powered by GitBook
On this page
Edit on GitHub
  1. Tips & Tricks
  2. Considerations

Basic concepts in Intel VT-x

The things you should know before start using HyperDbg

Some keywords will be frequently used in HyperDbg, and you should know about them (Most of the definitions derived from Intel software developer’s manual, volume 3C).

Virtual Machine Monitor (VMM): VMM acts as a host and has full control of the processor(s) and other platform hardware. A VMM is able to retain selective control of processor resources, physical memory, interrupt management, and I/O.

Guest Software: Each virtual machine (VM) is a guest software environment.

VMX Root Operation and VMX Non-root Operation: A VMM will run in VMX root operation, and guest software will run in VMX non-root operation.

VMX transitions: Transitions between VMX root operation and VMX non-root operation.

VM entries: Transitions into VMX non-root operation.

Extended Page Table (EPT): A modern mechanism that uses a second layer to convert the guest's physical address to the host's physical address.

VM-exits: Transitions from VMX non-root operation to VMX root operation.

Virtual machine control structure (VMCS): is a data structure in memory that exists exactly once per VM (or more precisely one per each VCPU [Virtual CPU]), while the VMM manages it. With every change of the execution context between different VMs, the VMCS is restored for the current VM, defining the state of the VM’s virtual processor and VMM control Guest software using VMCS.

The VMCS consists of six logical groups:

  • Guest-state area: Processor state saved into the guest state area on VM exits and loaded on VM entries.

  • Host-state area: Processor state loaded from the host state area on VM exits.

  • VM-execution control fields: Fields controlling processor operation in VMX non-root operation.

  • VM-exit control fields: Fields that control VM exits.

  • VM-entry control fields: Fields that control VM entries.

  • VM-exit information fields: Read-only fields to receive information on VM exits describing the cause and the nature of the VM exit.

I found a great work that illustrates the VMCS.

VMX Instructions

VMX introduces the following new instructions.

Intel/AMD Mnemonic
Description

INVEPT

Invalidate Translations Derived from EPT

INVVPID

Invalidate Translations Based on VPID

VMCALL

Call to VM Monitor

VMCLEAR

Clear Virtual-Machine Control Structure

VMFUNC

Invoke VM function

VMLAUNCH

Launch Virtual Machine

VMRESUME

Resume Virtual Machine

VMPTRLD

Load Pointer to Virtual-Machine Control Structure

VMPTRST

Store Pointer to Virtual-Machine Control Structure

VMREAD

Read Field from Virtual-Machine Control Structure

VMWRITE

Write Field to Virtual-Machine Control Structure

VMXOFF

Leave VMX Operation

VMXON

Enter VMX Operation

Life Cycle of VMM Software

  • The following items summarize the life cycle of a VMM and its guest software, as well as the interactions between them:

    • Software enters VMX operation by executing a VMXON instruction.

    • Using VM entries, a VMM can then turn guests into VMs (one at a time). The VMM effects a VM entry using instructions VMLAUNCH and VMRESUME; it regains control using VM exits.

    • VM exits transfer control to an entry point specified by the VMM. The VMM can take action appropriate to the cause of the VM exit and can then return to the VM using a VM entry.

    • Eventually, the VMM may decide to shut itself down and leave VMX operation. It does so by executing the VMXOFF instruction.

PreviousConsiderationsNextVMX root-mode vs VMX non-root mode

Last updated 3 years ago

The PDF version is also available .

here
VMCS Layout
VMCS Layout
VM Cycle