HyperDbg Documentation
CommunityDownloadResearchTutorialhwdbg
  • HyperDbg
  • Getting Started
    • Quick Start
    • FAQ
    • Build & Install
    • Attach to HyperDbg
      • Attach to a remote machine
      • Attach to local machine
      • Start a new process
      • Attach to a running process
  • Using HyperDbg
    • Prerequisites
      • Operation Modes
      • How to create a condition?
      • How to create an action?
      • Signatures
    • User-mode Debugging
      • Principles
      • Examples
        • basics
        • events
          • Getting Results of a System-call
    • Kernel-mode Debugging
      • Principles
      • Examples
        • beginning
          • Connecting To HyperDbg
          • Configuring Symbol Server/Path
        • basics
          • Setting Breakpoints & Stepping Instructions
          • Displaying & Editing & Searching Memory
          • Showing & Modifying Registers and Flags
          • Switching to a Specific Process or Thread
          • Mapping Data & Create Structures, and Enums From Symbols
        • events
          • Managing Events
          • Hooking Any Function
          • Intercepting All SYSCALLs
          • Monitoring Accesses To Structures
          • Triggering Special Instructions
          • Identifying System Behavior
        • Scripting Language Examples
    • Software Development Kit (SDK)
      • Events
        • Conditions
        • Actions
      • IOCTL
        • Event Registration
  • Commands
    • Debugging Commands
      • ? (evaluate and execute expressions and scripts in debuggee)
      • ~ (display and change the current operating core)
      • a (assemble virtual address)
      • load (load the kernel modules)
      • unload (unload the kernel modules)
      • status (show the debuggee status)
      • events (show and modify active/disabled events)
      • p (step-over)
      • t (step-in)
      • i (instrumentation step-in)
      • gu (step-out or go up)
      • r (read or modify registers)
      • bp (set breakpoint)
      • bl (list breakpoints)
      • be (enable breakpoints)
      • bd (disable breakpoints)
      • bc (clear and remove breakpoints)
      • g (continue debuggee or processing kernel packets)
      • x (examine symbols and find functions and variables address)
      • db, dc, dd, dq (read virtual memory)
      • eb, ed, eq (edit virtual memory)
      • sb, sd, sq (search virtual memory)
      • u, u64, u2, u32 (disassemble virtual address)
      • k, kd, kq (display stack backtrace)
      • dt (display and map virtual memory to structures)
      • struct (make structures, enums, data types from symbols)
      • sleep (wait for specific time in the .script command)
      • pause (break to the debugger and pause processing kernel packets)
      • print (evaluate and print expression in debuggee)
      • lm (view loaded modules)
      • cpu (check cpu supported technologies)
      • rdmsr (read model-specific register)
      • wrmsr (write model-specific register)
      • flush (remove pending kernel buffers and messages)
      • prealloc (reserve pre-allocated pools)
      • preactivate (pre-activate special functionalities)
      • output (create output source for event forwarding)
      • test (test functionalities)
      • settings (configures different options and preferences)
      • exit (exit from the debugger)
    • Meta Commands
      • .help (show the help of commands)
      • .debug (prepare and connect to debugger)
      • .connect (connect to a session)
      • .disconnect (disconnect from a session)
      • .listen (listen on a port and wait for the debugger to connect)
      • .status (show the debugger status)
      • .start (start a new process)
      • .restart (restart the process)
      • .attach (attach to a process)
      • .detach (detach from the process)
      • .switch (show the list and switch between active debugging processes)
      • .kill (terminate the process)
      • .process, .process2 (show the current process and switch to another process)
      • .thread, .thread2 (show the current thread and switch to another thread)
      • .pagein (bring the page into the RAM)
      • .dump (save the virtual memory into a file)
      • .formats (show number formats)
      • .script (run batch script commands)
      • .sympath (set the symbol server)
      • .sym (load pdb symbols)
      • .pe (parse PE file)
      • .logopen (open log file)
      • .logclose (close log file)
      • .cls (clear the screen)
    • Extension Commands
      • !a (assemble physical address)
      • !pte (display page-level address and entries)
      • !db, !dc, !dd, !dq (read physical memory)
      • !eb, !ed, !eq (edit physical memory)
      • !sb, !sd, !sq (search physical memory)
      • !u, !u64, !u2, !u32 (disassemble physical address)
      • !dt (display and map physical memory to structures)
      • !track (track and map function calls and returns to the symbols)
      • !epthook (hidden hook with EPT - stealth breakpoints)
      • !epthook2 (hidden hook with EPT - detours)
      • !monitor (monitor read/write/execute to a range of memory)
      • !syscall, !syscall2 (hook system-calls)
      • !sysret, !sysret2 (hook SYSRET instruction execution)
      • !mode (detect kernel-to-user and user-to-kernel transitions)
      • !cpuid (hook CPUID instruction execution)
      • !msrread (hook RDMSR instruction execution)
      • !msrwrite (hook WRMSR instruction execution)
      • !tsc (hook RDTSC/RDTSCP instruction execution)
      • !pmc (hook RDPMC instruction execution)
      • !vmcall (hook hypercalls)
      • !exception (hook first 32 entries of IDT)
      • !interrupt (hook external device interrupts)
      • !dr (hook access to debug registers)
      • !ioin (hook IN instruction execution)
      • !ioout (hook OUT instruction execution)
      • !hide (enable transparent-mode)
      • !unhide (disable transparent-mode)
      • !measure (measuring and providing details for transparent-mode)
      • !va2pa (convert a virtual address to physical address)
      • !pa2va (convert physical address to virtual address)
      • !dump (save the physical memory into a file)
      • !pcitree (show PCI/PCIe device tree)
      • !pcicam (dump the PCI/PCIe configuration space)
      • !idt (show Interrupt Descriptor Table entries)
      • !apic (dump local APIC entries in XAPIC and X2APIC modes)
      • !ioapic (dump I/O APIC)
    • Scripting Language
      • Assumptions & Evaluations
      • Variables & Assignments
      • Casting & Type-awareness
      • Conditionals & Loops
      • Constants & Functions
      • Debugger Script (DS)
      • Examples
        • view system state (registers, memory, variables)
        • change system state (registers, memory, variables)
        • trace function calls
        • pause the debugger conditionally
        • conditional breakpoints and events
        • patch the normal sequence of execution
        • access to a shared variable from different cores
        • count occurrences of events
      • Functions
        • debugger
          • pause
        • events
          • event_enable
          • event_disable
          • event_clear
          • event_sc
          • event_inject
          • event_inject_error_code
          • flush
        • exports
          • print
          • printf
        • interlocked
          • interlocked_compare_exchange
          • interlocked_decrement
          • interlocked_exchange
          • interlocked_exchange_add
          • interlocked_increment
        • memory
          • check_address
          • eb, ed, eq
          • eb_pa, ed_pa, eq_pa
          • memcpy
          • memcpy_pa
          • memcmp
          • virtual_to_physical
          • physical_to_virtual
        • diassembler
          • disassemble_len
          • disassemble_len32
        • spinlocks
          • spinlock_lock
          • spinlock_lock_custom_wait
          • spinlock_unlock
        • strings
          • strlen
          • wcslen
          • strcmp
          • strncmp
          • wcscmp
          • wcsncmp
    • Commands Map
  • Tips & Tricks
    • Considerations
      • Basic concepts in Intel VT-x
      • VMX root-mode vs VMX non-root mode
      • The "unsafe" behavior
      • Script engine in VMX non-root mode
      • Difference between process and thread switching commands
      • Accessing Invalid Address
      • Transparent Mode
    • Nested-Virtualization Environments
      • Supported Virtual Machines
      • Run HyperDbg on VMware
      • Run HyperDbg on Hyper-V
      • Supporting VMware/Hyper-V
      • VMware backdoor I/O ports
    • Misc
      • Event forwarding
      • Event short-circuiting
      • Event calling stage
      • Instant events
      • Message overflow
      • Customize build
        • Increase Communication Buffer Size
        • Number of EPT Hooks in One Page
        • Change Script Engine Limitations
      • Enable and disable events in Debugger Mode
      • Switch to New Process Layout
  • Contribution
    • Style Guide
      • Coding style
      • Command style
      • Doxygen style
    • Logo & Artworks
  • Design
    • Features
      • VMM (Module)
        • Control over NMIs
        • VMX root-mode compatible message tracing
        • Design of !epthook
        • Design of !epthook2
        • Design of !monitor
        • Design of !syscall & !sysret
        • Design of !exception & !interrupt
    • Debugger Internals
      • Events
      • Conditions
      • Actions
      • Kernel Debugger
        • Design Perspective
        • Connection
  • Links
    • Twitter
    • Telegram
    • Discord
    • Matrix
    • Mastodon
    • YouTube
    • hwdbg (Chip Debugger)
    • Doxygen
    • Contribution
Powered by GitBook
On this page
  • Command
  • Syntax
  • Description
  • Parameters
  • Examples
  • SDK
  • Remarks
  • Requirements
  • Related
Edit on GitHub
  1. Commands
  2. Debugging Commands

t (step-in)

Description of the 't' command in HyperDbg.

Previousp (step-over)Nexti (instrumentation step-in)

Last updated 4 months ago

Command

t

tr

Syntax

t

t [Count (hex)]

tr

tr [Count (hex)]

Description

Executes a single instruction (step-in) and optionally displays the resulting values of all registers and flags.

The difference between this command and the '' command is that, in the '' command, no other cores and other threads find a chance to be executed during the stepping process; the system is fully halted, and only the current core will execute just one instruction and halts again. However, in this command, all the threads and cores are continued until an instruction in the target thread is executed. This command won't follow the execution between different rings.

Parameters

[Count (hex)] (optional)

Count of step(s), or how many times perform the stepping operation. If you don't set this argument, then by default, the Count is 1.

Examples

If you want to step-in one instruction.

0: kHyperDbg> t
fffff801`68d91267    41 5B                               pop r11

If you want to step-in one instruction and view the registers.

0: kHyperDbg> tr
fffff801`68d91269    41 5A                               pop r10
RAX=0000000000000000 RBX=ffff948cbf6599d0 RCX=0000000000000024
RDX=0000000000000000 RSI=0000000000000000 RDI=ffff948cc266d670
RIP=fffff80168d91269 RSP=ffff9305492df6a8 RBP=0000000000000002
R8=0000000000000000  R9=0000000000000000  R10=0000000048564653
R11=0000000000000000 R12=0000000000000000 R13=0000000000000000
R14=ffff948cc266d670 R15=ffff948cc058e6b0 IOPL=00
OF 0  DF 0  IF 0  SF  0
ZF 1  PF 1  CF 0  AXF 0
CS 0010 SS 0018 DS 002b ES 002b FS 0053 GS 002b
RFLAGS=0000000000040046

If you want to step-in for 5 instructions.

0: kHyperDbg> t 5
fffff801`68d9126b    9D                                  popfq
fffff801`68d9126c    C3                                  ret
fffff801`63a12948    6A D1                               push 0xFFFFFFFFFFFFFFD1
fffff801`63a1294a    E9 B1 00 00 00                      jmp 0xFFFFF80163A12A00
fffff801`63a12b00    F6 44 24 10 01                      test byte ptr ss:[rsp+0x10], 0x01

SDK

To step through the instruction (regular step-in), you need to use the following function in libhyperdbg:

BOOLEAN
hyperdbg_u_stepping_regular_step_in();

Remarks

This command will set a trap flag in debuggee and continue all the cores. After executing one instruction, it halts the debuggee again.

If the currently executing instruction is a call instruction, it will follow and enter the call instruction.

All cores and threads (except the currently executing thread) find a chance to be executed between each step in this type of stepping.

Requirements

None

Related

If you load symbols and you don't want to see function names, you turn addressconversion off in the '' command.

i
i
settings
p (step-over)
i (instrumentation step-in)
gu (step-out or go up)