HyperDbg Documentation
CommunityDownloadResearchTutorialhwdbg
  • HyperDbg
  • Getting Started
    • Quick Start
    • FAQ
    • Build & Install
    • Attach to HyperDbg
      • Attach to a remote machine
      • Attach to local machine
      • Start a new process
      • Attach to a running process
  • Using HyperDbg
    • Prerequisites
      • Operation Modes
      • How to create a condition?
      • How to create an action?
      • Signatures
    • User-mode Debugging
      • Principles
      • Examples
        • basics
        • events
          • Getting Results of a System-call
    • Kernel-mode Debugging
      • Principles
      • Examples
        • beginning
          • Connecting To HyperDbg
          • Configuring Symbol Server/Path
        • basics
          • Setting Breakpoints & Stepping Instructions
          • Displaying & Editing & Searching Memory
          • Showing & Modifying Registers and Flags
          • Switching to a Specific Process or Thread
          • Mapping Data & Create Structures, and Enums From Symbols
        • events
          • Managing Events
          • Hooking Any Function
          • Intercepting All SYSCALLs
          • Monitoring Accesses To Structures
          • Triggering Special Instructions
          • Identifying System Behavior
        • Scripting Language Examples
    • Software Development Kit (SDK)
      • Events
        • Conditions
        • Actions
      • IOCTL
        • Event Registration
  • Commands
    • Debugging Commands
      • ? (evaluate and execute expressions and scripts in debuggee)
      • ~ (display and change the current operating core)
      • a (assemble virtual address)
      • load (load the kernel modules)
      • unload (unload the kernel modules)
      • status (show the debuggee status)
      • events (show and modify active/disabled events)
      • p (step-over)
      • t (step-in)
      • i (instrumentation step-in)
      • gu (step-out or go up)
      • r (read or modify registers)
      • bp (set breakpoint)
      • bl (list breakpoints)
      • be (enable breakpoints)
      • bd (disable breakpoints)
      • bc (clear and remove breakpoints)
      • g (continue debuggee or processing kernel packets)
      • x (examine symbols and find functions and variables address)
      • db, dc, dd, dq (read virtual memory)
      • eb, ed, eq (edit virtual memory)
      • sb, sd, sq (search virtual memory)
      • u, u64, u2, u32 (disassemble virtual address)
      • k, kd, kq (display stack backtrace)
      • dt (display and map virtual memory to structures)
      • struct (make structures, enums, data types from symbols)
      • sleep (wait for specific time in the .script command)
      • pause (break to the debugger and pause processing kernel packets)
      • print (evaluate and print expression in debuggee)
      • lm (view loaded modules)
      • cpu (check cpu supported technologies)
      • rdmsr (read model-specific register)
      • wrmsr (write model-specific register)
      • flush (remove pending kernel buffers and messages)
      • prealloc (reserve pre-allocated pools)
      • preactivate (pre-activate special functionalities)
      • output (create output source for event forwarding)
      • test (test functionalities)
      • settings (configures different options and preferences)
      • exit (exit from the debugger)
    • Meta Commands
      • .help (show the help of commands)
      • .debug (prepare and connect to debugger)
      • .connect (connect to a session)
      • .disconnect (disconnect from a session)
      • .listen (listen on a port and wait for the debugger to connect)
      • .status (show the debugger status)
      • .start (start a new process)
      • .restart (restart the process)
      • .attach (attach to a process)
      • .detach (detach from the process)
      • .switch (show the list and switch between active debugging processes)
      • .kill (terminate the process)
      • .process, .process2 (show the current process and switch to another process)
      • .thread, .thread2 (show the current thread and switch to another thread)
      • .pagein (bring the page into the RAM)
      • .dump (save the virtual memory into a file)
      • .formats (show number formats)
      • .script (run batch script commands)
      • .sympath (set the symbol server)
      • .sym (load pdb symbols)
      • .pe (parse PE file)
      • .logopen (open log file)
      • .logclose (close log file)
      • .cls (clear the screen)
    • Extension Commands
      • !a (assemble physical address)
      • !pte (display page-level address and entries)
      • !db, !dc, !dd, !dq (read physical memory)
      • !eb, !ed, !eq (edit physical memory)
      • !sb, !sd, !sq (search physical memory)
      • !u, !u64, !u2, !u32 (disassemble physical address)
      • !dt (display and map physical memory to structures)
      • !track (track and map function calls and returns to the symbols)
      • !epthook (hidden hook with EPT - stealth breakpoints)
      • !epthook2 (hidden hook with EPT - detours)
      • !monitor (monitor read/write/execute to a range of memory)
      • !syscall, !syscall2 (hook system-calls)
      • !sysret, !sysret2 (hook SYSRET instruction execution)
      • !mode (detect kernel-to-user and user-to-kernel transitions)
      • !cpuid (hook CPUID instruction execution)
      • !msrread (hook RDMSR instruction execution)
      • !msrwrite (hook WRMSR instruction execution)
      • !tsc (hook RDTSC/RDTSCP instruction execution)
      • !pmc (hook RDPMC instruction execution)
      • !vmcall (hook hypercalls)
      • !exception (hook first 32 entries of IDT)
      • !interrupt (hook external device interrupts)
      • !dr (hook access to debug registers)
      • !ioin (hook IN instruction execution)
      • !ioout (hook OUT instruction execution)
      • !hide (enable transparent-mode)
      • !unhide (disable transparent-mode)
      • !measure (measuring and providing details for transparent-mode)
      • !va2pa (convert a virtual address to physical address)
      • !pa2va (convert physical address to virtual address)
      • !dump (save the physical memory into a file)
      • !pcitree (show PCI/PCIe device tree)
      • !pcicam (dump the PCI/PCIe configuration space)
      • !idt (show Interrupt Descriptor Table entries)
      • !apic (dump local APIC entries in XAPIC and X2APIC modes)
      • !ioapic (dump I/O APIC)
    • Scripting Language
      • Assumptions & Evaluations
      • Variables & Assignments
      • Casting & Type-awareness
      • Conditionals & Loops
      • Constants & Functions
      • Debugger Script (DS)
      • Examples
        • view system state (registers, memory, variables)
        • change system state (registers, memory, variables)
        • trace function calls
        • pause the debugger conditionally
        • conditional breakpoints and events
        • patch the normal sequence of execution
        • access to a shared variable from different cores
        • count occurrences of events
      • Functions
        • debugger
          • pause
        • events
          • event_enable
          • event_disable
          • event_clear
          • event_sc
          • event_inject
          • event_inject_error_code
          • flush
        • exports
          • print
          • printf
        • interlocked
          • interlocked_compare_exchange
          • interlocked_decrement
          • interlocked_exchange
          • interlocked_exchange_add
          • interlocked_increment
        • memory
          • check_address
          • eb, ed, eq
          • eb_pa, ed_pa, eq_pa
          • memcpy
          • memcpy_pa
          • memcmp
          • virtual_to_physical
          • physical_to_virtual
        • diassembler
          • disassemble_len
          • disassemble_len32
        • spinlocks
          • spinlock_lock
          • spinlock_lock_custom_wait
          • spinlock_unlock
        • strings
          • strlen
          • wcslen
          • strcmp
          • strncmp
          • wcscmp
          • wcsncmp
    • Commands Map
  • Tips & Tricks
    • Considerations
      • Basic concepts in Intel VT-x
      • VMX root-mode vs VMX non-root mode
      • The "unsafe" behavior
      • Script engine in VMX non-root mode
      • Difference between process and thread switching commands
      • Accessing Invalid Address
      • Transparent Mode
    • Nested-Virtualization Environments
      • Supported Virtual Machines
      • Run HyperDbg on VMware
      • Run HyperDbg on Hyper-V
      • Supporting VMware/Hyper-V
      • VMware backdoor I/O ports
    • Misc
      • Event forwarding
      • Event short-circuiting
      • Event calling stage
      • Instant events
      • Message overflow
      • Customize build
        • Increase Communication Buffer Size
        • Number of EPT Hooks in One Page
        • Change Script Engine Limitations
      • Enable and disable events in Debugger Mode
      • Switch to New Process Layout
  • Contribution
    • Style Guide
      • Coding style
      • Command style
      • Doxygen style
    • Logo & Artworks
  • Design
    • Features
      • VMM (Module)
        • Control over NMIs
        • VMX root-mode compatible message tracing
        • Design of !epthook
        • Design of !epthook2
        • Design of !monitor
        • Design of !syscall & !sysret
        • Design of !exception & !interrupt
    • Debugger Internals
      • Events
      • Conditions
      • Actions
      • Kernel Debugger
        • Design Perspective
        • Connection
  • Links
    • Twitter
    • Telegram
    • Discord
    • Matrix
    • Mastodon
    • YouTube
    • hwdbg (Chip Debugger)
    • Doxygen
    • Contribution
Powered by GitBook
On this page
  • What is HyperDbg?
  • Why do we need HyperDbg?
  • How can I learn HyperDbg?
  • Who uses HyperDbg?
  • What makes HyperDbg different from classic debuggers?
  • What's the difference between HyperDbg and Windbg?
  • Is it only for a special processor? Or can I run it on AMD or ARM processors?
  • What generation of Intel Processors supports HyperDbg?
  • Can I use it on Linux, FreeBSD or macOS?
  • Should I have a separate machine to use HyperDbg?
  • Can I use it on a nested-virtualization environment (VMware, VirtualBox, Hyper-V)?
  • How can I start reading about HyperDbg internals? How does it work? Can I contribute to HyperDbg?
Edit on GitHub
  1. Getting Started

FAQ

Frequently Asked Questions (FAQ)

PreviousQuick StartNextBuild & Install

Last updated 1 year ago

What is HyperDbg?

HyperDbg is an open-source, hypervisor-assisted . You can use HyperDbg to debug both user-mode and kernel-mode applications.

Why do we need HyperDbg?

HyperDbg gives you unique abilities to use modern processor features that will assist you in your reverse engineering journey.

You can see a list of these features .

How can I learn HyperDbg?

The OpenSecurityTraining2's "Reversing with HyperDbg (Dbg3301)" tutorial series, available on (preferred) and is the recommended way to get started with and learn HyperDbg. It guides you through the initial steps of using HyperDbg, covering essential concepts, principles, and debugging functionalities, along with practical examples and numerous reverse engineering methods that are unique to HyperDbg.

Who uses HyperDbg?

Programmers, security researchers, malware analyzers, and fuzzer programmers.

What makes HyperDbg different from classic debuggers?

HyperDbg has a unique architecture. The principles of designing HyperDbg are making an OS-independent debugger and leveraging modern processor features to bring new reverse engineering methods; thus, the features you see in HyperDbg are not available in other debuggers.

What's the difference between HyperDbg and Windbg?

HyperDbg has a completely different architecture. Windbg operates on ring 0 (kernel) while HyperDbg is running on ring -1 (hypervisor); thus, HyperDbg provides unique features that are not available on Windbg (OS-Level).

Besides that, HyperDbg is not just a simple debugger. It comes up with modern reverse engineering methods by using vt-x and other modern processor facilities to ease reverse engineering, analyzing, and fuzzing.

Is it only for a special processor? Or can I run it on AMD or ARM processors?

The current version of HyperDbg only supports Intel x64 processors. You cannot run it on an AMD processor or an ARM processor. This is mainly because HyperDbg heavily uses VT-x which is an Intel-based technology, but future versions will support other processors as well.

What generation of Intel Processors supports HyperDbg?

Your processor should at least support Intel Extended Page Table (A.K.A. EPT), which is introduced on Nehalem Microarchitecture, but most of the functionalities are working on Intel's 4th or later generation; so, the previous processors might have undefined behaviors with some of the functionalities of HyperDbg. Even though most of the functionalities are supported on the 4th generation of Intel Processors but still some minor functionalities need newer processors. It's recommended to use a Skylake (6th generation) processor or newer processors to support all functionalities.

Can I use it on Linux, FreeBSD or macOS?

No, the current version is only limited to Windows; however, one of our top priorities is to port HyperDbg on Linux, but currently, it's only usable on Windows.

Should I have a separate machine to use HyperDbg?

Can I use it on a nested-virtualization environment (VMware, VirtualBox, Hyper-V)?

The current versions of HyperDbg are only tested on VMware Workstation Player (free for non-commercial use) and VMware Workstation Pro, but in future versions, we will support all the virtualization platforms with nested-virtualization.

How can I start reading about HyperDbg internals? How does it work? Can I contribute to HyperDbg?

Of course not! The only problem with not having a separate machine is that you can only operate on , and you can't pause (halt) the system with breakpoints or for stepping. You can also use VMware Workstation to debug in with all of the features, including stepping and pausing the debuggee.

The source for reading about hypervisors and HyperDbg internals is tutorials.

For contribution, you can follow the .

You can visit to know more about HyperDbg internals.

debugger
here
OST2's website
YouTube
VMI mode
debugger mode
Hypervisor From Scratch
contribution guide
here
design